Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 3, 2026
-
Free, publicly-accessible full text available December 3, 2026
-
In geographical image segmentation, performance is often constrained by the limited availability of training data and a lack of generalizability, particularly for segmenting mobility infrastructure such as roads, sidewalks, and crosswalks. Vision foundation models like the Segment Anything Model (SAM), pre-trained on millions of natural images, have demonstrated impressive zero-shot segmentation performance, providing a potential solution. However, SAM struggles with geographical images, such as aerial and satellite imagery, due to its training being confined to natural images and the narrow features and textures of these objects blending into their surroundings. To address these challenges, we propose Geographical SAM (GeoSAM), a SAM-based framework that fine-tunes SAM using automatically generated multi-modal prompts. Specifically, GeoSAM integrates point prompts from a pre-trained task-specific model as primary visual guidance, and text prompts generated by a large language model as secondary semantic guidance, enabling the model to better capture both spatial structure and contextual meaning. GeoSAM outperforms existing approaches for mobility infrastructure segmentation in both familiar and completely unseen regions by at least 5% in mIoU, representing a significant leap in leveraging foundation models to segment mobility infrastructure, including both road and pedestrian infrastructure in geographical images. The source code is publicly available.more » « lessFree, publicly-accessible full text available October 21, 2026
-
When mobile apps are used extensively in our daily lives, their responsiveness has become an important factor that can negatively impact the user experience. The long response time of a mobile app can be caused by a variety of reasons, including soft hang bugs or prolonged user interface APIs (UI-APIs). While hang bugs have been researched extensively before, our investigation on UI-APIs in today’s mobile OS finds that the recursive construction of UI view hierarchy often can be time-consuming, due to the complexity of today’s UI views. To accelerate UI processing, such complex views can be pre-processed and cached before the user even visits them. However, pre-caching every view in a mobile app is infeasible due to the incurred overheads on time, energy, and cache space. In this paper, we propose MAPP, a framework for Mobile App Predictive Pre-caching. MAPP has two main modules, 1) UI view prediction based on deep learning and 2) UI-API pre-caching, which coordinate to improve the responsiveness of mobile apps. MAPP adopts a per-user and per-app prediction model that is tailored based on the analysis of collected user traces, such as location, time, or the sequence of previously visited views. A dynamic feature ranking and model selection algorithm is designed to judiciously filter out less relevant features for improving the prediction accuracy with less computation overhead. MAPP is evaluated with 61 real-world traces from 18 volunteers over 30 days to show that it can shorten the response time of mobile apps by 59.84% on average with an average cache hit rate of 92.55%.more » « lessFree, publicly-accessible full text available July 2, 2026
-
Autonomous mobile robots (AMRs) are capable of carrying out operations continuously for 24/7, which enables them to optimize tasks, increase throughput, and meet demanding operational requirements. To ensure seamless and uninterrupted operations, an effective coordination of task allocation and charging schedules is crucial while considering the preservation of battery sustainability. Moreover, regular preventive main- tenance plays an important role in enhancing the robustness of AMRs against hardware failures and abnormalities during task execution. However, existing works do not consider the influence of properly scheduling AMR maintenance on both task downtime and battery lifespan. In this paper, we propose MTC, a maintenance-aware task and charging scheduler designed for fleets of AMR operating continuously in highly automated envi- ronments. MTC leverages Linear Programming (LP) to first help decide the best time to schedule maintenance for a given set of AMRs. Subsequently, the Kuhn-Munkres algorithm, a variant of the Hungarian algorithm, is used to finalize task assignments and carry out the charge scheduling to minimize the combined cost of task downtime and battery degradation. Experimental results demonstrate the effectiveness of MTC, reducing the combined total cost up to 3.45 times and providing up to 68% improvement in battery capacity degradation compared to the baselines.more » « less
An official website of the United States government
